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A classical nonrelativisticU (1) × U (1) gauge field model for the electromagnetic
interaction of composite particles is proposed and the quantum formalism is constructed.
This gauge model containing a Chern–SimonsU (1) field and the electromagneticU (1)
field can be coupled to both a bosonic or a fermionic matter field. We explicitly consider
the second case, a composite fermion system in the presence of an electromagnetic field,
and we carry out the canonical quantization by the Dirac method. The path integral
approach is developed and the Feynman rules are established. A simplified model is
considered. As an alternative path integral method, the BRST formalism for this gauge
model is also treated.

1. INTRODUCTION

We start with a brief consideration of composite bosons (CBs) (Girvin and
MacDonald, 1987; Lee and Fisher, 1989; Lee and Zhang, 1991; Read, 1989; Zhang,
1992; Zhanget al., 1989) and composite fermions (CFs) (Jain, 1989a, 1990; Jain
and Kamilla, 1998) in the context of the quantum Hall effect (QHE) and its integer
(IQHE) and fractional (FQHE) versions.

Even though the experimental observations of the IQHE and the FQHE are
essentially identical, except for the value of the quantized Hall resistance, the
possibility of a relationship between them had not been contemplated, mainly
because the FQHE was believed to be fully explainable within the lowest Landau
level (LL) whereas the IQHE clearly required the higher LLs.

Furthermore, while the IQHE is thought of essentially as a noninteracting
electron phenomenon (Laughlin, 1981; Halperin, 1982), the FQHE is believed to
arise from the condensation of the two-dimensional electrons into a “new collective
state of matter” as a result of interelectron interactions (Laughlin, 1983).
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One of the models used to explain the FQHE is the so-called quasi-particle
hierarchy (QPH) approach, started by Laughlin (1983), who proposed an ansatz
wave function to describe the correlated electron low-energy liquid atν = 1/(2n+
1) = 1/3, 1/5, 1/7, . . . , whereν is the filling factor andn is an integer. It was
compared by Laughlin (1983) and other investigators (Fanoet al., 1986; Haldane
and Reyazi, 1985) with the exact numerical ground-state wave function of few
electron systems and was found to be extremely accurate.

Laughlin also constructed wave functions for the quasi-particle excitations
and made compelling arguments that there was a finite gap in the excitation spec-
trum, resulting in FQHE with fractionsf = 1/(2n+ 1) ( f = h/(e2RH)), where
h is Planck’s constant,e is the fundamental charge, andRH is the Hall resistance
on the plateaus).

Later on, Haldane (1983) and Halperin (1984) proposed iterative hierarchical
methods that extend the QPH approach to the other odd-denominator fractions.
These methods suppose that “daughter” states are obtained at each step, when the
quasi-particles of a “parent” state condense themselves into a Laughlin-like state.
So, 1/3 generated daughters at 2/5 and 2/7, which in its turn produced daughters
at 5/17, 3/11, 5/13, and 3/7, and so on.

This last scheme was not completely convincing (Jain, 1992) because it should
have explained all fractions on a more or less equal footing.

This pointed out that the physics of the Laughlin wave function was itself not
fully understood. There were several attempts to elucidate the relevant correlations
in the Laughlin wave function, as we will show in the following.

It is important to develop an effective-field-theory model of the FQHE anal-
ogous to the Landau–Ginzburg theory of superconductivity. In this sense, Girvin
and MacDonald (1987) proposed a field-theory model containing a complex scalar
field coupled to a gauge vector field with a Chern–Simons (CS) action. This model
exhibits vortex solutions with finite energy and fractional charge that can be iden-
tified with Laughlin’s quasi-particles and quasi-holes. The amplitude fluctuations
of the scalar field are massive and are identified with the density-fluctuation modes
of the single-mode approximation (Girvinet al., 1985, 1986). So, the CB theory
arose.

Zhanget al. (1989) and Read (1989) proposed a mean field theory in which
the Laughlin wave function was viewed as a Bose condensate.

These theories, however, did not give a better explanation of the other odd-
denominator fractions.

CFs were introduced by Jain (1989a, 1990; Jain and Kamilla, 1998). The
motivation was to provide a unified description of the IQHE and the FQHE and a
source of excellent trial wave functions for the seriesν = p/(2np± 1), wheren
and p are integers.

The CS approach to two-dimensional electrons in a strong perpendicular
magnetic field at or close to half filling of the lowest LL (ν = 1/2), as pioneered by



P1: VENDOR/GFU/GCP/GCY/GCX/GAY P2: GCV/GCQ/FJQ QC:

International Journal of Theoretical Physics [ijtp] PP159-339818 May 29, 2001 13:47 Style file version Nov. 19th, 1999

Electromagnetic Interaction of Composite Particles 1455

Halperinet al.(1993), is well supported by experiments (Willettet al., 1990, 1993).
These investigators identified the low-temperature phase of fully spin-polarized
electrons at half filling as a Fermi liquid of CFs, each consisting of an electron
with two attached flux quanta in a zero magnetic field (Jain, 1989b; Lopez and
Fradkin, 1991).

They pointed out that their CF formalism easily generalizes to other filling
factors and to higher LLs, where, if applicable, it describes a Fermi liquid phase
for spin-polarized electrons at all even-denominator filling factors. In this case, the
CFs can be viewed as electrons carrying an even number of flux quanta.

In the present paper, we start by considering a composite particle system
coupled to twoU(1) gauge fields, a CS one aµ (Zhanget al., 1989; Wilczek,
1982; Arovaset al., 1985), and the other the electromagnetic fieldAµ. The pur-
pose of our paper is to analyze this system in a particular classical nonrelativistic
U (1)×U (1) gauge field model and to study this model from the quantum point of
view.

On the other hand, the classical and quantum CS theories in two spatial
dimensions coupled to different types of matter field have been known since a long
time ago (Deseret al., 1982a,b, 1988; Dunneet al., 1989; Jackiw and Templeton,
1981; Matsuyama, 1990a,b; Avdeevet al., 1992; Lin and Ni, 1990; Odintsov,
1992); therefore, this fact will be profitable in all the constructive procedure.

The paper is organized as follows. In section 2, we present our gauge model
from the classical point of view. Later on, we analyze the set of constraints and
perform the canonical quantization of the model following the prescriptions of
the Dirac formalism for constrained Hamiltonian systems. In section 3, by using
the path integral method, we establish the Feynman rules of the model. Later, in
section 4, we consider a reduced model related to a known one. Finally, in section 5,
the BRST formalism is also treated.

2. CLASSICAL GAUGE MODEL: CANONICAL QUANTIZATION

We are going to consider a classical nonrelativistic field theory withU (1)×
U (1) gauge symmetry for the electromagnetic interaction of composite particles
in (2+ 1) dimensions. In particular, we will analyze a CF system. We will as-
sume that this system can be described by the following singular Lagrangian
density:

L = Lem
cf + Lem, (2.1)

whereLem
cf is written as

Lem
cf = iψ†D0ψ + 1

2mb
ψ† ED2ψ − µψ†ψ + 1

4πφ̃
εµνρaµ∂νaρ (2.2a)
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andLem reads

Lem= −1

4
Fµν(A)Fµν(A). (2.2b)

In Eqs. (2.2), the Greek indices take the valuesµ, ν, ρ = 0, 1, 2.
We employ units whereh = c = 1. The Minkowskian metric isgµν = diag

(1,−1,−1) andε012= ε12 = 1.
In Eq. (2.2a), the covariant derivative, involving both the CSU (1) gauge field

aµ and the electromagneticU (1) gauge field Aµ, is written asDµ = ∂µ − iaµ −
ieAµ and we designateED2 = D2

1 +D2
2. The matter fieldψ is a charged spinorial

field describing CFs. The electron charge is taken as−e. mb is the band mass of
the electrons.µ is the chemical potential for electrons.φ̃ is the strength of the flux
tube, in units of the flux quantum 2π . (The fictitious charge of each particle that
interacts with the fictitious gauge field has been chosen to have unit strength.)

A CB system can be considered along the same lines, the only difference is
that, in this case, the matter field is a charged scalar field.

By using the expression for the covariant derivative, we can rewrite Eq.
(2.2a) as

Lem
cf = i

τ + 1

2
ψ†∂0ψ + i

τ − 1

2
∂0ψ

†ψ + ψ† (a0+ eA0)ψ

+ 1

2mb
ψ† ED2ψ − µψ†ψ + 1

4πφ̃
εµνρaµ∂νaρ. (2.3)

In Eq. (2.3), the kinetic fermionic term is written in the general form by using
the arbitrary parameterτ , which is the usual way to obtain symmetric expressions
for the canonically conjugate momenta corresponding to the matter fieldsψ† andψ
(Sundermeyer, 1982).

The canonical quantization is carried out by using the Dirac algorithm
(Sundermeyer, 1982; Dirac, 1964).

The momentapµ, Pµ, π†α , andπα canonically conjugate to the independent
field variablesaµ, Aµ, ψα, andψ†α , respectively, remain given by

p0 = 0, (2.4a)

pi = 1

4πφ̃
εi j aj , (2.4b)

P0 = 0, (2.4c)

Pi = Fi 0(A), (2.4d)

π†α =
∂Lem

cf

∂ψ̇α
= −i

τ + 1

2
ψ†α , (2.4e)
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πα = ∂Lem
cf

∂ψ̇
†
α

= i
τ − 1

2
ψα, (2.4f)

where the Latin indices take the valuesi, j = 1, 2 and the Greek index takes the
valuesα = 1, 2.

As is usual, the nonvanishing fundamental equal-time (x0 = y0) Bose–Fermi
brackets are those used for pairs of canonically conjugate variables and are
given by

[aµ(x), pν(y)]− = δνµδ(Ex − Ey), (2.5a)

[ Aµ(x), Pν(y)]− = δνµδ(Ex − Ey), (2.5b)

[ψα(x), π†β (y)]+ = −δαβδ(Ex − Ey), (2.5c)

[ψ†α (x), πβ(y)]+ = −δαβδ(Ex − Ey). (2.5d)

Here, we have used the notation [. , .]∓ to point out brackets between bosonic
and fermionic Grassmannian variables, respectively.

Looking at Eqs. (2.4), it can be seen that the primary constraints are

80
1 = p0 ≈ 0, (2.6a)

80i
2 = pi − 1

4πφ̃
εi j aj ≈ 0, (2.6b)

80
3 = P0 ≈ 0, (2.6c)

Ä†α = π†α + i
τ + 1

2
ψ†α ≈ 0, (2.6d)

Äα = πα − i
τ − 1

2
ψα ≈ 0, (2.6e)

with i, j = 1, 2 andα = 1, 2.
Now, the primary HamiltonianHp =

∫
d2xHp remains defined in terms of

the following Hamiltonian density:

Hp = Hc+ λ18
0
1+ λ2i8

0i
2 + λ38

0
3+ λ†αÄα +Ä†αλα, (2.7)

where λ1, λ2i , i = 1, 2, andλ3 are bosonic Lagrange multipliers andλ†α and
λα, α = 1, 2 , are fermionic ones.
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In Eq. (2.7), the functionalHc is defined as usual byHc = ȧµpµ + ȦµPµ +
ψ̇π† + ψ̇†π − L, which, after Eqs. (2.4) have been used, writes

Hc = − 1

4πφ̃
εi j a0∂i aj + ∂i a0 pi + 1

4
Fi j (A)Fi j (A)+ ∂i A0Pi

− 1

2
Pi Pi + µψ†ψ − ψ†(a0+ eA0)ψ − 1

2mb
ψ† ED2ψ. (2.8)

Now, we must implement the consitency condition on the primary constraints
and find the secondary constraints. From Eqs. (2.6a,c), we find the following
secondary constraints:

81
1 =

[
80

1, Hp
] = 1

4πφ̃
εi j ∂i aj + ∂i pi + ψ†ψ ≈ 0, (2.9a)

81
3 =

[
80

3, Hp
] = ∂i Pi + eψ†ψ ≈ 0. (2.9b)

Equations (2.9a,b) are the time components of the equations of motion cor-
responding toaµ andAµ, respectively.

Once the consistency condition is imposed on the constraints (2.6b,d,e), the
Lagrange multipliersλ2i , i = 1, 2,λ†α andλα, α = 1, 2, appearing in Eq. (2.7) are
determined.

Later on, when the consistency on the constraints81
1 ≈ 0 and81

3 ≈ 0 is
imposed, the equations are identically satisfied, so no new constraint exists.

Consequently, in the model there are six bosonic constraints, (2.6a–c) and
(2.9), and four fermionic ones, (2.6d,e). It is easy to show that the two bosonic
constraints (2.6a,c) are first-class, while the other four bosonic, together with the
four fermionic ones, are second-class. Moreover, it can be proven that there are
two suitable linear combinations of second-class constraints that give rise to two
new first-class constraints. These linear combinations are written as

61 = e81
1−81

3 = e∂i pi − ∂i Pi + e

4πφ̃
εi j ∂i aj ≈ 0, (2.10a)

62 = ψ†Ä− ψÄ† − i

e
81

3 = ψ†π − ψπ† −
i

e
∂i Pi ≈ 0. (2.10b)

Therefore, two of the second-class constraints can be eliminated and the final
set of constraints remains given by

(i) The four bosonic first-class constraints defined by the functions61,62,
63 = 80

1 and64 = 80
3.

(ii) The two bosonic second-class constraints defined by80i
2 , i=1, 2, and the

four fermionic second-class constraints defined byÄ†α andÄα, α = 1, 2.

Now, we must go from the Bose–Fermi brackets to the Dirac bracketsD(F)
with regard to the matrixF constructed with the Bose–Fermi brackets between
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the second-class constraints. It is well-known that theD(F) bracket between the
variablesR(x) andS(y) is defined by

[R(x), S(y)]D(F)

= [R(x), S(y)] −
∫

d2u d2v[R(x), 0I (u)]F−1
I J (Eu, Ev)[0J(v), S(y)], (2.11)

where I , J = 1, . . . , 6 and01 = 801
2 , 02 = 802

2 , 03 = Ä†1, 04 = Ä†2, 05 = Ä1,
and06 = Ä2 are the second-class constraints.

In Eq. (2.11), the matrixF−1 is the inverse of the matrixF with elements
[0I , 0J ]. It is easy to show that the matrixF is written as follows:

F =



0 − 1
2πφ̃

0 0 0 0
1

2πφ̃
0 0 0 0 0

0 0 0 0 −i 0
0 0 0 0 0 −i
0 0 −i 0 0 0
0 0 0 −i 0 0

 δ(Ex − Ey) (2.12)

and the inverse reads

F−1 =


0 2πφ̃ 0 0 0 0
−2πφ̃ 0 0 0 0 0

0 0 0 0 i 0
0 0 0 0 0 i
0 0 i 0 0 0
0 0 0 i 0 0

 δ(Ex − Ey). (2.13)

Now, the extended HamiltonianHe, generator of the time evolutions of generic
functionals, remains defined as follows:

He =
∫

d2x(Hc+ ρa6a)−
∫

d2x d2y 0I (x)F−1
I J (Ex, Ey)[0J(y), Hc]. (2.14)

In Eq. (2.14),ρa, a = 1, . . . , 4, are four arbitrary parameters and the four
first-class constraints associated correspond to the symmetries of the gauge group
U (1)×U (1).

Once we impose theD(F) brackets we must take the second-class constraints
as strongly equal to zero equations. So, the second term on the right-hand side of
Eq. (2.14) vanishes and then the extended Hamiltonian writes

He =
∫

d2x(Hc+ ρa6a). (2.15)

Furthermore, the following fields are determined:

pi = 1

4πφ̃
εi j aj , (2.16a)
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π†α = −i
τ + 1

2
ψ†α , (2.16b)

πα = i
τ − 1

2
ψα. (2.16c)

So, from Eq. (2.11), we find the followingD(F) brackets:
field–field:

[a1(x), a2(y)]D(F)
− = 2πφ̃δ(Ex − Ey), (2.17a)

[ψ†α (x), ψβ(y)]D(F)
+ = −i δαβδ(Ex − Ey), (2.17b)

field–momentum:

[a0(x), p0(y)]D(F)
− = δ(Ex − Ey), (2.17c)

[ Aµ(x), Pν(y)]D(F)
− = δνµδ(Ex − Ey), (2.17d)

with all other brackets vanishing.
Now, we must calculate the final Dirac brackets. For this purpose, we must

search for admissible gauge-fixing conditions2a ≈ 0, a = 1, . . . , 4, each one of
them corresponding to each first-class constraint.

Moreover, these subsidiary conditions must verify that det[1A,1B] 6≈ 0,
where A, B = 1, . . . , 8 and1a = 6a,14+a = 2a, a = 1, . . . , 4, and must be
compatible with the equations of motion. Of course, the above requirements do
not determine uniquely the functions2a and so the matter is to find a suitable set
of gauge-fixing conditions.

Let us assume the following simple expressions for the gauge-fixing condi-
tions:

21 = ∂ i ai ≈ 0, (2.18a)

22 = ∂ i Ai ≈ 0, (2.18b)

23 = a0 ≈ 0, (2.18c)

24 = ∇2A0− ∂i Pi ≈ 0. (2.18d)

The Dirac bracket between the variablesR(x) andS(y) is written as

[R(x), S(y)]D = [R(x), S(y)]D(F) −
∫

d2u d2v[R(x),1A(u)]D(F)

×G−1
AB(Eu, Ev)[1B(v), S(y)]D(F). (2.19)

In Eq. (2.19), the matrixG−1 is the inverse of the matrixG whose elements
are [1A,1B], A, B = 1, . . . , 8.
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It is easy to see that the matrixG is given by

G =



0 0 0 0 e∇2 −∇2 0 0

0 0 0 0 0 − i

e
∇2 0 0

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −∇2

−e∇2 0 0 0 0 0 0 0

∇2 i

e
∇2 0 0 0 0 0 ∇2

0 0 1 0 0 0 0 0
0 0 0 ∇2 0 −∇2 0 0


δ(Ex − Ey). (2.20)

The determinant ofG holds

detG = −[∇2]6δ(Ex − Ey) 6≈ 0 (2.21)

and its inverse matrix is written as

G−1 =



0 0 0 0 −e−1u 0 0 0
0 0 0 −ieu −iu −ieu 0 0
0 0 0 0 0 0 v 0
0 ieu 0 0 0 0 0 u

e−1u iu 0 0 0 0 0 0
0 ieu 0 0 0 0 0 0
0 0 −v 0 0 0 0 0
0 0 0 −u 0 0 0 0


, (2.22)

whereu = (4π |Ex − Ey|)−1 andv = δ(Ex − Ey).
Once we impose the Dirac brackets we must take the first-class constraints and

the gauge-fixing conditions as strongly equal to zero equations. So, the following
fields are determined:

p0 = 0, (2.23a)

P0 = 0, (2.23b)

a0 = 0, (2.23c)

A0(x) = 1

4π

∫
d2y

∂i Pi (y)

|Ex − Ey| . (2.23d)

This way, from Eq. (2.19), we obtain the following Dirac brackets:
field–field:

[a1(x), a2(y)]D
− = 2πφ̃δ(Ex − Ey), (2.24a)

[ψ†α (x), ψβ(y)]D
+ = −i δαβδ(Ex − Ey), (2.24b)
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field–momentum:

[ Ai (x), P j (y)]D
− = δ j

i δ(Ex − Ey)− 1

4π
∂i (x)∂ j (x)

1

|Ex − Ey| , (2.24c)

with all other brackets vanishing.
So, the dynamics of the classical model is then completely specified.
Finally, the canonical quantization is realized by replacing the Dirac brackets

between field variables in the (anti) commutators between field operators according
to the rule

[O1(x), O2(y)]D →−i [ Ô1Ô2− (−1)|O1||O2|Ô2Ô1], (2.25)

where|Oi | = 0(1) whenOi is bosonic (fermionic),i = 1, 2.
Consequently, the four first-class constraints and the corresponding four

gauge-fixing conditions that we have determined restrict the phase space variables
to the physical ones, and so the true Hilbert space is obtained.

Furthermore, we note that the quantization of a nonrelativistic CB system
interacting with the electromagnetic field can be treated similarly. In this case,
the four second-class fermionic constraints (2.6d,e) turn into second-class bosonic
ones and no other change in the structure of the constraints occurs. The fermionic
brackets (2.5c,d), (2.17b), and (2.24b) turn into bosonic brackets. So, after that Eq.
(2.25) is imposed, the Dirac brackets (2.24b) become commutators.

3. PATH INTEGRAL QUANTIZATION AND FEYNMAN RULES

We develop the Feynman path integral quantization method according to
the Faddeev–Senjanovic (FS) formalism (Faddeev, 1970; Senjanovic, 1976) used
when the system has first- and second-class constraints. So, we assume that the
partition function for the present gauge model is written as follows:

Z =
∫
DaµDpµDAνDPνDψαDπ†αDψ

†
βDπβδ(1A)(detG)1/2δ(0I )(det F)1/2

× exp

{
i
∫

d3x[ȧµpµ + ȦµPµ + ψ̇π† + ψ̇†π −He]

}
, (3.1)

where the Hamiltonian densityHe was given in Eq. (2.14).
The determinant of the matrix (2.12) holds

det F = 1

4π2φ̃
2 δ(Ex − Ey). (3.2)

As it does not depend either on the field variables or on the corresponding
canonically conjugate momenta, thus (detF)1/2 is included in the path integral
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normalization factor. Exactly the same occurs with the other determinant appearing
in Eq. (3.1) (see Eq. (2.21)).

In Eq. (3.1), by using the delta functionsδ(13), δ(14), δ(17), δ(03), δ(04),
δ(05), andδ(06), the path integrals over the fieldsp0, P0, a0, π†1 , π†2 , π1, andπ2,
respectively, are immediately performed.

Moreover, in Eq. (3.1), the delta functionδ(18) can be written asδ(18) =
δ(A0− f ), where f (x) = 1

4π

∫
d2y ∂i Pi (y)

|Ex−Ey| , and also the path integral onA0 can
be made.

On the other hand, we use the Fourier integral representationδ(1k) =∫
D3k exp (i

∫
d3x 3k1k), k = 1, 2.

Consequently, the expression (3.1) of the partition function can be written as

Z =
∫
DaiDpiDAjDP jDψαDψ†βD3

kδ (∂ l al ) δ (∂mAm) δ (01)δ(02)

× exp

(
i
∫

d3xL′
)

, (3.3)

where

L′ = ȧi pi + Ȧi Pi + i

2
[(τ − 1)ψ̇

†
ψ − (τ + 1)ψ̇ψ†] −H′, (3.4)

with

H′ = H′e−3k1k, (3.5)

wherek = 1, 2 andH′e is the originalHe subject to the integrations that we have
just done.

Looking at Eq. (3.5), due to the arbitrariness of the multipliers3k, it is
possible to rescale the corresponding integration variables in such a way as to have
H′ = Hc (Sundermeyer, 1982).

In Eq. (3.3), by using the delta functionsδ(01) andδ(02), the path integrals
over the fieldsp1 and p2, respectively, are carried out.

The integrations over the variablesP j , which are Gaussian integrals, can also
be performed and so the partition function takes the form

Z =
∫
DaµDAνDψαDψ†βδ (∂ l al ) δ (∂mAm) exp

(
i
∫

d3xL
)

, (3.6)

whereL is the original Lagrangian density written in Eq. (2.1).
Finally, by using the Faddeev–Popov trick to go over a general covariant

gauge, we write the gauge-fixing conditions in the form∂µaµ(x)− ca(x) = 0
and∂µAµ(x)− cA(x) = 0. By considering the first of these conditions, we write
δ[∂µaµ(x)− ca(x)] = ∫ Dca(x) exp{i λa

2

∫
d3x[∂µaµ(x)]2}, with a Gaussian

weight independent ofca(x). Therefore, the partition function does not depend
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on ca(x) and the integration over this quantity can be carried out. So, in the path
integral we write exp{i λa

2

∫
d3x[∂µaµ(x)]2} instead ofδ[∂µaµ(x)− ca(x)]. Anal-

ogously for the second condition.
This way, Eq. (3.6) takes the final form

Z =
∫
DaµDAνDψαDψ†β exp

(
i
∫

d3xLeff

)
, (3.7)

where the functionalLeff is given by

Leff = L+ Lfix, (3.8)

with

Lfix = λa

2
(∂µaµ)2+ λA

2
(∂µAµ)2. (3.9)

So, a profitable form for the partition function was obtained by expressing the
quantization of the system under consideration in terms of a path integral for the
independent dynamical fields of the model,aµ, Aµ, ψα, andψ†α , which take place.
Next, we can use the diagrammatic technique in the framework of the perturbative
theory.

It is straightforward to go from the path integral (3.7) to the Feynman rules
for propagators and vertices (’t Hooft and Velman, 1973). So, the quadratic part
of the Lagrangian densityLeff is recognized as representing the propagators and
the remaining pieces as representing the vertices. Consequently,Leff stands for the
effective Lagrangian density of a CF system coupled to the electromagnetic field
and it can be partitioned

Leff = Leff (aµ)+ Leff (Aµ)+ Leff (ψ, ψ†)+ Lint
eff (aµ, Aµ, ψ, ψ†). (3.10)

We have named

Leff (aµ) = 1

2
aµ(d−1)µνaν , (3.11a)

Leff (Aµ) = 1

2
Aµ(D−1)µνAν , (3.11b)

Leff (ψ, ψ†) = ψ†G−1ψ, (3.11c)

Lint
eff (aµ, Aµ, ψ, ψ†) = ψ†V1

µaµψ + ψ†V2
µ Aµψ + ψ†aµWµν

1 aνψ

+ψ†AµWµν

2 Aνψ + ψ†aµWµν

3 Aνψ. (3.11d)

In Eq. (3.11a), the 3× 3 matrix (d−1) is the inverse of the propagator matrix
of the CS fieldaµ. Analogously, in Eq. (3.11b), the 3× 3 matrix (D−1) is the
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inverse of the propagator matrix of the electromagnetic fieldAµ. These matrices
are Hermitian and nondegenerate. So, the propagatorsdµν(k) and Dµν(k), in the
momentum space, can be evaluated and read

dµν(k) = 1

λa

kµkν
k4
+ 2iπφ̃εµνρ

kρ

k2
, (3.12a)

Dµν(k) = −gµν
1

k2
+
(

1+ 1

λA

)
kµkν
k4

, (3.12b)

wherek2 = kµkµ.
In Eq. (3.11c),G is the nonrelativistic propagator of the matter field. In the

momentum space, it is given by

G(Ep, E) =
(

E − µ− Ep
2

2mb

)−1

, (3.13)

whereE is the particle energy,Ep is its ordinary momentum, andEp2 = p2
1 + p2

2.
In Eq. (3.11d), the 3-vectorsVn = (Vn

µ ), n = 1, 2, give the 3-point vertices
of the model and read

V1 = V, (3.14a)

V2 = eV, (3.14b)

where

V =
(

1,
1

mb
qi

)
, (3.15)

with i = 1, 2.
Finally, in Eq. (3.11d), the 3× 3 matricesWm = (Wµν

m ), m= 1, 2, 3, give
the 4-point vertices and are written as

W1 = − 1

2mb
W, (3.16a)

W2 = − e2

2mb
W, (3.16b)

W3 = − e

mb
W, (3.16c)

where

W =
0 0 0

0 1 0
0 0 1

 . (3.17)
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Next, the Feynman rules for propagators and vertices can be written:

(i) Propagators.We associate with the propagators of the gauge fieldsaµ andAµ a
wavy thick line and a wavy thin line connecting two generic points, respectively,

and with a straight line the usual nonrelativistic propagator of the fermionic matter
fieldψ

(ii) Vertices. So, the 3-point vertices of the model are

and the 4-point vertices are

Here, we have not included the factor (2π )3 and momentum conservation delta
functions. They are to be understood. Furthermore, as is usual, we have to take into
account a minus sign for every closed fermion loop and another minus sign for
diagrams related through the exchange of two fermion lines, internal or external. A
combinatorial factor correcting for double counting in case that identical particles
occur must also be taken into account.
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We do not treat the regularization and renormalization problem of this model
here. However, by considering the expressions of the propagators and vertices
and taking into account the above Feynman rules, complete information about
the perturbative behavior could be obtained. It can be seen that this gauge model
belongs to the class of theories with only a finite number of divergent diagrams. So,
the regularization and renormalization problem is reduced to the one corresponding
to a superrenormalizable theory and it can be solved by the usual methods.

4. SIMPLIFIED MODEL

Now, we consider the following singular Lagrangian density:

L = i
τ + 1

2
ψ†∂0ψ + i

τ − 1

2
∂0ψ

†ψ − µψ†ψ + ψ†a0ψ + 1

2mb
ψ† ED2ψ

+ 1

2πφ̃
εi j a0∂i aj , (4.1)

obtained by removing few terms from our starting one (see Eq. (2.1)).
The Lagrangian density (4.1) is essentially that considered by Halperinet al.

(1993).
The momentapµ, Pi , π†α , andπα, canonically conjugate to the independent

field variablesaµ, Ai , ψα, andψ†α , respectively, read

p0 = 0, (4.2a)

pi = 0, (4.2b)

Pi = 0, (4.2c)

π†α =
∂L
∂ψ̇α

= −i
τ + 1

2
ψ†α , (4.2d)

πα = ∂L
∂ψ̇
†
α

= i
τ − 1

2
ψα, (4.2e)

wherei = 1, 2 andα = 1, 2.
The Bose–Fermi brackets are given by Eqs. (2.5a,c,d) and the spatial part of

Eq. (2.5b).
From Eqs. (4.2), we obtain the primary constraints

80
1 = p0 ≈ 0, (4.3a)

80i
2 = pi ≈ 0, (4.3b)
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80i
3 = Pi ≈ 0, (4.3c)

Ä†α = π†α + i
τ + 1

2
ψ†α ≈ 0, (4.3d)

Äα = πα − i
τ − 1

2
ψα ≈ 0, (4.3e)

with i = 1, 2 andα = 1, 2.
In this case, the primary Hamiltonian density reads

Hp = Hc+ λ18
0
1+ λ2i8

0i
2 + λ3i8

0i
3 + λ†αÄα +Ä†αλα, (4.4)

whereλ1, λ2i , andλ3i , i = 1, 2, are bosonic Lagrange multipliers andλ†α andλα,
α = 1, 2, are fermionic ones.

In Eq. (4.4),Hc = ȧµpµ + Ȧi Pi + ψ̇†π + ψ̇π† − L and by using Eqs. (4.2)
we obtain

Hc = µψ†ψ − ψ†a0ψ − 1

2mb
ψ† ED2ψ − 1

2πφ̃
εi j a0∂i aj . (4.5)

We implement the consistency condition on the bosonic constraints (4.3a,b,c,),
and we find the following secondary constraints:

81
1 =

1

2πφ̃
εi j ∂i aj + ψ†ψ ≈ 0, (4.6a)

81i
2 = εik∂ka0 ≈ 0, (4.6b)

81i
3 = ψ†(i ∂i + ai + eAi )ψ ≈ 0, (4.6c)

wherei = 1, 2.
Equation (4.6a) is the time component of the equations of motion correspond-

ing toaµ.
Once the consistency condition is imposed on the fermionic constraints

(4.3d,e), the Lagrange multipliersλ†α andλα, α = 1, 2, appearing in Eq. (4.4) are
determined. Later on, when the consistency on the constraints (4.6) is imposed, the
Lagrange multipliersλ1, λ2i , andλ3i , i = 1, 2, present in Eq. (4.4) are determined.

We find that every constraint is a second-class one.
Summarizing, in the model under consideration there are fourteen second-

class constraints, ten bosonic, (4.3a–c) and (4.6), and four fermionic ones (4.3d,e).

5. BRST FORMALISM

We are going to construct the BRST formalism for the constrained
Hamiltonian system under consideration (Becchiet al., 1976; Fradkin and
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Fradkina, 1978; Fradkin and Vilkovisky, 1975; Henneaux, 1985; Marnelius, 1981;
Sundermeyer, 1982; Tyupin, unpublished).

As was shown above, the Hamiltonian system before imposing the gauge-
fixing conditions is defined by the four first-class constraints6a ≈ 0, a = 1, . . . , 4,
given in Eqs. (2.10) and (2.6a,c), respectively, the Hamiltonian given in Eq. (2.15)
and theD(F) brackets for the dynamical variables given in Eqs. (2.17). The fol-
lowing brackets are allD(F) brackets. So, from now on we will write theD(F)
brackets without the superscription “D(F)”.

At this stage, it is convenient to note that the Hamiltonian densityHc, given
in Eq. (2.8), can be partitioned in the following way:

Hc = H0− a0

(
1

e
61+ i62

)
− ieA062. (5.1)

We can write

[6a(x),6b(y)]− = Cc
ab6c(x)δ(Ex − Ey), (5.2a)

[H0,6a(x)]− = Db
a6b(x), (5.2b)

with a, b, c = 1, . . . , 4 and H0 =
∫

d2xH0, where H0 is the particular
Hamiltonian density from Eq. (5.1).

In Eq. (5.2a), let us note that for the constrained Hamiltonian system under
consideration all the coefficientsCc

ab vanish. This is a consequence that the present
model is an Abelian one.

Furthermore, in Eq. (5.2b), all the coefficientsDb
a vanish for the Hamiltonian

chosenH0. This is always possible to make in any usual CS theory (Henneaux,
1985). For instance, one case in which this choice is not feasible is when terms
with higher derivatives are added to the Lagrangian (Foussatset al., 1995).

Moreover, owing to the arbitrariness of the Lagrange multipliers, the
Hamiltonian density appearing in Eq. (2.15) can also be written as follows:

He = H0− ρa6a, (5.3)

wherea = 1, . . . , 4, with the relation between the Hamiltonian densitiesH0 and
Hc given in Eq. (5.1).

As is well-known, in the BRST formalism it is convenient to treat the
Lagrange multipliersρa (defined in Eq. (5.3)) on the same footing as the remaining
dynamical variables and to associate with them an equal number of canonically
conjugate momentaξa, such as

[ρa(x), ξb(y)]− = δb
aδ(Ex − Ey). (5.4)
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With the purpose of not changing the dynamical structure of the theory, classi-
cally these momenta are constrained to vanish. Precisely, the first-class constraints
ξa = 0 generate the gauge transformationsρa→ ρa + ua of the multipliers, mak-
ing evident their arbitrariness.

Consequently, from now on our set of dynamical variables will be

A6 = (aµ, Aµ, ψα, ψ†α , ρa), (5.5)

where the compound index6 we have used runs over the components of the field
variables.

The set of the canonically conjugate momenta corresponding to the field
variables is written as

P6 = (pµ, Pµ, π†α , πα, ξa) (5.6)

and the new set of first-class constraints is defined by the functions

4A = (6a, ξa), (5.7)

whereA = 1, . . . , 8.
Therefore, Eqs. (5.2) take the form

[4A(x),4B(y)]− = CC
AB4C(x)δ(Ex − Ey), (5.8a)

[H0,4A(x)]− = DB
A4B(x), (5.8b)

where all the coefficientsCC
AB andDB

A vanish.
Now, we must introduce the BRST-invariant Hamiltonian densityH1 by con-

sidering the fermionic ghost fields (Majorana spinors)QA and their canonically
conjugate momentaPA satisfying

[QA(x), PB(y)]+ = δB
Aδ(Ex − Ey). (5.9)

This Hamiltonian density is written as

H1 = H0+ PB DB
AQA = H0. (5.10)

Next, we must find the BRST-invariant gauge-fixed Hamiltonian densityHχ ;
it is given by

Hχ (x) = H1(x)−
∫

d2y[χ (x), Q(y)]+ = H0(x)−
∫

d2y[χ (x), Q(y)]+,

(5.11)

whereχ = PAϒ
A is the gauge-fixing variable,ϒ B being the functions that define

the gauge-fixing conditions given by the set of quantities

ϒ A = −(ρa,2a). (5.12)
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In Eq. (5.11),Q is the BRST generator given by the well-known expression

Q = 4AQA + 1

2
PCCC

ABQAQB = 4AQA
. (5.13)

As the constraints defined by the functions (5.7) can be partitioned into two
subsets, we assume that the ghosts are considered in such a way that

QA = (qa, pa), (5.14a)

PA = (p†a, q†a), (5.14b)

inserting the antighosts. So, we are working in the mixed representation in which
both the ghosts and antighosts are diagonal.

Therefore, the following canonical brackets hold:

[qa(x), p†b(y)]+ = δb
aδ(Ex − Ey), (5.15a)

[pa(x), q†b(y)]+ = δb
aδ(Ex − Ey). (5.15b)

Like this, we obtain the following expression forHχ :

Hχ (x) = H0(x)+ p†a(x)pa(x)+6a(x)ρa(x)+ ξa(x)2a(x)

+ q†a(x)
∫

d2y[2a(x),6b(y)]−qb(y). (5.16)

When an integration in the last term of Eq. (5.16) is performed and since
[2a(x),6b(y)]− = f a

b∇2δ(Ex − Ey)+ ga
bδ(Ex − Ey), where f a

b and ga
b are the ele-

ments of the matrices

f =


−e 0 0 0
1 i

e 0 0
0 0 0 0
0 0 0 1

 , (5.17a)

g =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (5.17b)

respectively, this term readsf a
bq†a(x)∇2qb(x)+ q†3(x)q3(x).

Consequently, the BRST Lagrangian densityLχ is given by

Lχ = Ȧ6P6 + PAQ̇A −Hχ . (5.18)

When the constrained system has first- and second-class constraints, as in the
present case, the partition function in the BRST formalism is written using the
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following path integral (Fradkin and Fradkina, 1978; Henneaux, 1985):

Zχ =
∫
DA6DP6DQADPA

δ(0I )(det F)1/2 exp

(
i
∫

d3xLχ
)

, (5.19)

where detF is given by Eq. (3.2).
It is easy to prove that this last expression for the partition function is equiv-

alent to that of Eq. (3.1) in the FS form, as follows:
The path integral over the variablespa andp†a is Gaussian and it is easily

performed.
The next task is to pass to a nonrelativistic gauge (see Sundermeyer, 1982;

Henneaux, 1985); so, we carry out the following replacement2a→ ε−12a, make
a scale change of the integration variablesξa→ εξa andq†a→ εq†a, and pass to
the limit ε→ 0 in the partition function (this is possible because of the Fradkin–
Vilkovisky theorem), obtaining

Zχ =
∫
DaµDpµDAνDPνDψαDπ†αDψ

†
βDπβDρaDξaDqaDq†b

× δ(0I )(det F)1/2 exp

(
i
∫

d3x L′χ
)

, (5.20)

where

L′χ = ȧµpµ + ȦµPµ + ψ̇π† + ψ̇†π −H0−6aρa − ξa2a − q†a[2a,6b]−qb.

(5.21)

The integrations over the path integral variablesρa andξa are elementary
and, formally, the integration of the last term of Eq. (5.21) is given by∫

DqaDq†b exp

[
−i
∫

d3xq†a(x)
∫

d2y[2a(x),6b(y)]−qb(y)

]
= − i

2π
(detG)1/2. (5.22)

So, the final outcome coincides exactly with Eq. (3.1), obtained following
the FS procedure. Therefore, we conclude that both methods give the same basic
results and, this way, they can be considered as alternating ones.

6. CONCLUSIONS AND OUTLOOK

Starting from a classical nonrelativisticU (1)×U (1) gauge model for com-
posite particles interacting with the electromagnetic field in (2+ 1) dimensions,
the canonical quantization has been presented. This has been done for the CF
case. The model under consideration was analyzed in the framework of the Dirac
Hamiltonian formalism.
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Later on, by going over the path integral quantization method, the Feynman
rules of the model were established. The model has five vertices, two 3-point and
three 4-point vertices. So, using the perturbative theory as is usual, it would be
possible to obtain information about the regularization and renormalization of the
model.

Next, we have analyzed a simplified version of the starting model similar to
one used within the framework of condensed matter.

In the last section, the BRST formalism of the gauge model was given. The
partition function obtained from this formalism is equivalent to that obtained by
the FS method, as must be expected.

In a future paper, using the perturbative theory we are going to analyze the
diagrammatic structure at least at one loop of the model.

Furthermore, we will consider a more generalU (1)×U (1) gauge model for
composite particles by adding the following terms to the Lagrangian density:

(i) An interaction term between the CS and electromagnetic fields. Therefore
in this case a suitable mixed boson propagator associated with these fields,
preserving the gauge invariance of the model, will have to be defined.

(ii) Several types of terms with the purpose of improving the infrared and ul-
traviolet behaviors of this propagator, to render the model less divergent.

We will compare the obtained results with the corresponding ones to other
theories (Shankar, 1999).
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